

NAG C Library Function Document

nag_dtrsy (f08qhc)

1 Purpose

nag_dtrsy (f08qhc) solves the real quasi-triangular Sylvester matrix equation.

2 Specification

```
void nag_dtrsy (Nag_OrderType order, Nag_TransType trana, Nag_TransType tramb,
    Nag_SignType sign, Integer m, Integer n, const double a[], Integer pda,
    const double b[], Integer pdb, double c[], Integer pdc, double *scale,
    NagError *fail)
```

3 Description

nag_dtrsy (f08qhc) solves the real Sylvester matrix equation

$$\text{op}(A)X \pm X\text{op}(B) = \alpha C,$$

where $\text{op}(A) = A$ or A^T , and the matrices A and B are upper quasi-triangular matrices in canonical Schur form (as returned by nag_dhseqr (f08pec)); α is a scale factor (≤ 1) determined by the function to avoid overflow in X ; A is m by m and B is n by n while the right-hand side matrix C and the solution matrix X are both m by n . The matrix X is obtained by a straightforward process of back substitution (see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if $\alpha_i \pm \beta_j \neq 0$, where $\{\alpha_i\}$ and $\{\beta_j\}$ are the eigenvalues of A and B respectively and the sign (+ or -) is the same as that used in the equation to be solved.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J (1992) Perturbation theory and backward error for $AX - XB = C$ *Numerical Analysis Report* University of Manchester

5 Parameters

1: **order** – Nag_OrderType *Input*

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **trana** – Nag_TransType *Input*

On entry: specifies the option $\text{op}(A)$ as follows:

if **trana** = Nag_NoTrans, then $\text{op}(A) = A$;

if **trana** = Nag_Trans or Nag_ConjTrans, then $\text{op}(A) = A^T$.

Constraint: **trana** = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

3: **tranb** – Nag_TransType *Input*

On entry: specifies the option $\text{op}(B)$ as follows:

if **tranb** = **Nag_NoTrans**, then $\text{op}(B) = B$;

if **tranb** = **Nag_Trans** or **Nag_ConjTrans**, then $\text{op}(B) = B^T$.

Constraint: **tranb** = **Nag_NoTrans**, **Nag_Trans** or **Nag_ConjTrans**.

4: **sign** – Nag_SignType *Input*

On entry: indicates the form of the Sylvester equation as follows:

if **sign** = **Nag_Plus**, then the equation is of the form $\text{op}(A)X + X\text{op}(B) = \alpha C$;

if **sign** = **Nag_Minus**, then the equation is of the form $\text{op}(A)X - X\text{op}(B) = \alpha C$.

Constraint: **sign** = **Nag_Plus** or **Nag_Minus**.

5: **m** – Integer *Input*

On entry: m , the order of the matrix A , and the number of rows in the matrices X and C .

Constraint: **m** ≥ 0 .

6: **n** – Integer *Input*

On entry: n , the order of the matrix B , and the number of columns in the matrices X and C .

Constraint: **n** ≥ 0 .

7: **a**[*dim*] – const double *Input*

Note: the dimension, *dim*, of the array **a** must be at least $\max(1, \mathbf{pda} \times \mathbf{m})$.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix A is stored in **a**[(*j* – 1) \times **pda** + *i* – 1] and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix A is stored in **a**[(*i* – 1) \times **pda** + *j* – 1].

On entry: the m by m upper quasi-triangular matrix A in canonical Schur form, as returned by nag_dhseqr (f08pec).

8: **pda** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **a**.

Constraint: **pda** $\geq \max(1, \mathbf{m})$.

9: **b**[*dim*] – const double *Input*

Note: the dimension, *dim*, of the array **b** must be at least $\max(1, \mathbf{pdb} \times \mathbf{n})$.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix B is stored in **b**[(*j* – 1) \times **pdb** + *i* – 1] and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix B is stored in **b**[(*i* – 1) \times **pdb** + *j* – 1].

On entry: the n by n upper quasi-triangular matrix B in canonical Schur form, as returned by nag_dhseqr (f08pec).

10: **pdb** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **b**.

Constraint: **pdb** $\geq \max(1, \mathbf{n})$.

11: **c**[*dim*] – double *Input/Output*

Note: the dimension, *dim*, of the array **c** must be at least $\max(1, \mathbf{pdc} \times \mathbf{n})$ when **order** = **Nag_ColMajor** and at least $\max(1, \mathbf{pdc} \times \mathbf{m})$ when **order** = **Nag_RowMajor**.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix C is stored in $\mathbf{c}[(j - 1) \times \mathbf{pdc} + i - 1]$ and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix C is stored in $\mathbf{c}[(i - 1) \times \mathbf{pdc} + j - 1]$.

On entry: the m by n right-hand side matrix C .

On exit: \mathbf{c} is overwritten by the solution matrix X .

12: **pdc** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array \mathbf{c} .

Constraints:

if **order** = **Nag_ColMajor**, $\mathbf{pdc} \geq \max(1, \mathbf{m})$;
 if **order** = **Nag_RowMajor**, $\mathbf{pdc} \geq \max(1, \mathbf{n})$.

13: **scale** – double * *Output*

On exit: the value of the scale factor α .

14: **fail** – NagError * *Output*

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $\mathbf{m} = \langle \text{value} \rangle$.

Constraint: $\mathbf{m} \geq 0$.

On entry, $\mathbf{n} = \langle \text{value} \rangle$.

Constraint: $\mathbf{n} \geq 0$.

On entry, **pda** = $\langle \text{value} \rangle$.

Constraint: **pda** > 0.

On entry, **pdb** = $\langle \text{value} \rangle$.

Constraint: **pdb** > 0.

On entry, **pdc** = $\langle \text{value} \rangle$.

Constraint: **pdc** > 0.

NE_INT_2

On entry, **pda** = $\langle \text{value} \rangle$, $\mathbf{m} = \langle \text{value} \rangle$.

Constraint: **pda** $\geq \max(1, \mathbf{m})$.

On entry, **pdb** = $\langle \text{value} \rangle$, $\mathbf{n} = \langle \text{value} \rangle$.

Constraint: **pdb** $\geq \max(1, \mathbf{n})$.

On entry, **pdc** = $\langle \text{value} \rangle$, $\mathbf{m} = \langle \text{value} \rangle$.

Constraint: **pdc** $\geq \max(1, \mathbf{m})$.

On entry, **pdc** = $\langle \text{value} \rangle$, $\mathbf{n} = \langle \text{value} \rangle$.

Constraint: **pdc** $\geq \max(1, \mathbf{n})$.

NE_PERTURBED

A and B have common or close eigenvalues, perturbed values of which were used to solve the equation.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Consider the equation $AX - XB = C$. (To apply the remarks to the equation $AX + XB = C$, simply replace B by $-B$.)

Let \tilde{X} be the computed solution and R the residual matrix:

$$R = C - (A\tilde{X} - \tilde{X}B).$$

Then the residual is always small:

$$\|R\|_F = O(\epsilon) (\|A\|_F + \|B\|_F) \|\tilde{X}\|_F.$$

However, \tilde{X} is **not** necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:

$$\|\tilde{X} - X\|_F \leq \frac{\|R\|_F}{\text{sep}(A, B)}$$

but this may be a considerable overestimate. See Golub and Van Loan (1996) for a definition of $\text{sep}(A, B)$, and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 8.

8 Further Comments

The total number of floating-point operations is approximately $mn(m + n)$.

To solve the **general** real Sylvester equation

$$AX \pm XB = C$$

where A and B are general nonsymmetric matrices, A and B must first be reduced to Schur form :

$$A = Q_1 \tilde{A} Q_1^T \quad \text{and} \quad B = Q_2 \tilde{B} Q_2^T$$

where \tilde{A} and \tilde{B} are upper quasi-triangular and Q_1 and Q_2 are orthogonal. The original equation may then be transformed to:

$$\tilde{A}\tilde{X} \pm \tilde{X}\tilde{B} = \tilde{C}$$

where $\tilde{X} = Q_1^T X Q_2$ and $\tilde{C} = Q_1^T C Q_2$. \tilde{C} may be computed by matrix multiplication; nag_dtrsy (f08qhc) may be used to solve the transformed equation; and the solution to the original equation can be obtained as $X = Q_1 \tilde{X} Q_2^T$.

The complex analogue of this function is nag_ztrsy (f08qvc).

9 Example

To solve the Sylvester equation $AX + XB = C$, where

$$A = \begin{pmatrix} 0.10 & 0.50 & 0.68 & -0.21 \\ -0.50 & 0.10 & -0.24 & 0.67 \\ 0.00 & 0.00 & 0.19 & -0.35 \\ 0.00 & 0.00 & 0.00 & -0.72 \end{pmatrix}, \quad B = \begin{pmatrix} -0.99 & -0.17 & 0.39 & 0.58 \\ 0.00 & 0.48 & -0.84 & -0.15 \\ 0.00 & 0.00 & 0.75 & 0.25 \\ 0.00 & 0.00 & -0.25 & 0.75 \end{pmatrix}$$

and

$$C = \begin{pmatrix} 0.63 & -0.56 & 0.08 & -0.23 \\ -0.45 & -0.31 & 0.27 & 1.21 \\ 0.20 & -0.35 & 0.41 & 0.84 \\ 0.49 & -0.05 & -0.52 & -0.08 \end{pmatrix}.$$

9.1 Program Text

```
/* nag_dtrsy (f08qhc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, j, m, n, pda, pdb, pdc;
    Integer exit_status=0;
    double scale;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    double *a=0, *b=0, *c=0;

#define NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define C(I,J) c[(J-1)*pdः + I - 1]
    order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define C(I,J) c[(I-1)*pdः + J - 1]
    order = Nag_RowMajor;
#endif

    INIT_FAIL(fail);
    Vprintf("f08qhc Example Program Results\n\n");

    /* Skip heading in data file */
    Vscanf("%*[^\n] ");
    Vscanf("%ld%ld%*[^\n] ", &m, &n);
#define NAG_COLUMN_MAJOR
    pda = m;
    pdb = n;
    pdः = m;
#else
    pda = m;
    pdb = n;
    pdः = n;
#endif

    /* Allocate memory */
    if ( !(a = NAG_ALLOC(m * m, double)) ||
        !(b = NAG_ALLOC(n * m, double)) ||
        !(c = NAG_ALLOC(m * n, double)) )
    {
        Vprintf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
```

```

}

/* Read A, B and C from data file */
for (i = 1; i <= m; ++i)
{
    for (j = 1; j <= m; ++j)
        Vscanf("%lf", &A(i,j));
}
Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf("%lf", &B(i,j));
}
Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf("%lf", &C(i,j));
}
Vscanf("%*[^\n] ");

/* Reorder the Schur factorization T */
f08qhc(order, Nag_NoTrans, Nag_NoTrans, Nag_Plus, m, n, a, pda,
        b, pdb, c, pdc, &scale, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08qhc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
/* Print the solution matrix X stored in C */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,
        c, pdc, "Solution matrix X", 0, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from x04cac.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
Vprintf("\n SCALE = %10.2e\n", scale);
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (c) NAG_FREE(c);

return exit_status;
}

```

9.2 Program Data

```

f08qhc Example Program Data
 4 4                      :Values of M and N
 0.10  0.50  0.68  -0.21
-0.50  0.10  -0.24  0.67
 0.00  0.00  0.19  -0.35
 0.00  0.00  0.00  -0.72  :End of matrix A
-0.99  -0.17  0.39  0.58
 0.00  0.48  -0.84  -0.15
 0.00  0.00  0.75  0.25
 0.00  0.00  -0.25  0.75  :End of matrix B
 0.63  -0.56  0.08  -0.23
-0.45  -0.31  0.27  1.21
 0.20  -0.35  0.41  0.84
 0.49  -0.05  -0.52  -0.08  :End of matrix C

```

9.3 Program Results

f08qhc Example Program Results

```
Solution matrix X
      1         2         3         4
1  -0.4209   0.1764   0.2438  -0.9577
2   0.5600  -0.8337  -0.7221   0.5386
3  -0.1246  -0.3392   0.6221   0.8691
4  -0.2865   0.4113   0.5535   0.3174

SCALE = 1.00e+00
```
